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Abstract 

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of 

homogentisic acid (HGA) in the body. Affected individuals lack functional levels of an enzyme 

required to breakdown HGA. Mutations in the homogentisate 1,2-dioxygenase (HGD) gene 

cause AKU and they are responsible for deficient levels of functional HGD, which, in turn, leads 

to excess levels of HGA. Although HGA is rapidly cleared from the body by the kidneys, in the 

long term it starts accumulating in various tissues, especially cartilage. Over time (rarely before 

adulthood), it eventually changes the color of affected tissue to slate blue or black. Here we 

report a comprehensive mutation analysis of 111 pathogenic and 190 non-pathogenic HGD 

missense mutations using protein structural information. Using our comprehensive suite of 

graph-based signature methods, mCSM complemented with sequence-based tools, we studied the 

functional and molecular consequences of each mutation on protein stability, interaction and 

evolutionary conservation. The scores generated from the structure and sequence-based tools 

were used to train a supervised machine learning algorithm with 89% accuracy. The empirical 

classifier was used to generate the variant phenotype for novel HGD missense mutations. All this 

information is deployed as a user friendly freely available web server called HGDiscovery 

(http://biosig.unimelb.edu.au/hgdiscovery/). 
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1. Introduction 

Alkaptonuria (AKU) is a rare recessive metabolic disorder which was used by Sir Archibald 

Garrod in his Croonian lectures to describe one of the inborn errors of metabolism [1]. It is a 

hereditary disorder, resulting from mutations in the gene encoding the enzyme homogentisate 1,2 

dioxygenase (HGD) (EC 1.13.11.5), responsible for the breakdown of homogentisic acid (HGA) 

which is an intermediate metabolite in the tyrosine degradation pathway [2]. With blockage in 

tyrosine metabolism, elevated levels of HGA leads to deposition of its own polymers as an 

ochronotic pigment in the connective tissue including cartilage, heart valves, and sclera [3]. 

Manifestation of disease during early childhood is seen as “homogentisic aciduria”, which is 

darkening of the urine upon standing. Delayed symptoms can be seen after 30 years of age which 

involve “ochronosis” – pigmentation of collagenous tissues like cardiac valves, eyes, ears and 

skin [4]. Current estimates of the disease occurrence in the Unites States obtained from the 

National Organisation of Rare Disorders is 1 in 250,000 – 1,000,000 live births [5].  

 

HGD gene located on chromosome 3q21-q23 [6]. It is a single copy gene composed of 14 exons 

[7]. Due to compound heterozygosity or homozygosity of HGD gene variants, the enzymatic 

defect in HGD is autosomal recessive [6, 8]. Information on all variants identified till date have 

been globally documented in the HGD mutation database (http://hgddatabase.cvtisr.sk/).  

The experimental crystal structure of the HGD protein has been solved (PDB code 1EY2 and 

1EYB) in 2000. The HGD protein protomer (NP_000178.2), is composed of 445 amino acids, 

which includes a 280 residue N-terminal domain, a central β-sandwich  and a 140 residue C-

terminal domain [8]. It is a complex hexameric protein arranged as a dimer of trimers [9]. It is 

principally expressed in osteoarticular compartment cells (i.e. chondrocytes, synoviocytes and 

http://hgddatabase.cvtisr.sk/
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osteoblasts) [10] and in prostate, small intestine, colon, kidney and liver [7]. The spatial structure 

of the protomer, two-disc like trimers and the hexamer are maintained by an intricate network of 

non-covalent inter and intra-molecular interaction. This makes the protein structure extremely 

vulnerable to mutations [11].  

Understanding the clinical impact of a rare genetic variants is a preeminent challenge in human 

genetics. Accurate predictions of variant’s impact are an essential step towards precision 

medicine. The major obstacle in studying an ultra-rare and complex disease like AKU is the lack 

of a standardized methodology to assess disease severity and response to treatment [12], which is 

complicated by the fact that AKU symptoms differ from one individual to another. Detailed 

evaluation and comparison of clinical and genomic data of AKU patient can play a key role to 

understand AKU variability. An in-depth molecular characterization of the disease is needed in 

pharmacogenomics prediction for suitable medical treatment. To address the issue, 

ApreciseKUre platform was developed, which includes data on potential biomarkers, patients’ 

quality of life, biochemical outcomes and clinical information facilitating their integration and 

analysis in order to shed light on pathological characterization of every AKU patient in a typical 

precision medicine perspective [13-16] .  

A further extension of the above method is proposed in this paper, where we describe a new 

database which would complement the existing ApreciseKUre database. The new database 

would provide the necessary underlying molecular information for novel and known clinical 

HGD variants. Structure and sequence-based information has been used to build a predictive tool 

using supervised machine learning algorithm. The tool has been implemented through the 

webserver HGDiscovery (http://biosig.unimelb.edu.au/hgdiscovery/), providing functional and 

phenotypic information on non-synonymous HGD variations to guide clinical decisions.  

http://biosig.unimelb.edu.au/hgdiscovery/
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Moreover, HGDiscovery has a higher performance compared to the existing generic genetic 

tools designed for missense variants predictions such as SIFT [17], PMut [18] and PolyPhen 2 

[19]. 

 

2. Methods 

2.1 Data curation 

After removal of duplicate mutations, we curated a dataset composed of 301 non-synonymous 

substitutions. It included 190 non-pathogenic non-synonymous variations retrieved from 

gnomAD v.3 (Genome build GRCh38/hg38, Ensembl gene ID: ENSG00000113924.11, Region 

3:120628173-120682571) [20] and 111 AKU-causing clinical mutations. The 111 variants were 

first described in the study of Ascher et al. 2019 [21] and included in HGD Mutation Database 

(http://hgddatabase.cvtisr.sk) [22], which summarizes results of mutation analysis from 

approximately 530 AKU patients reported so far.  

2.2 HGD protein structure 

The X-ray crystallographic 3D structure of Homo sapiens holo-HGD (holo-HGDHs, PDB ID: 

1EY2) is incomplete; thus, it needed structural reconstruction of the missing residues of the 

monomer and then of the whole hexamer in order to be able to perform a complete evaluation of 

variants effect on protein stability and flexibility. The missing loop in the human protein 

structure (residues 348–355) was reconstructed by homology modeling using the Pseudomonas 

putida HGD (HGDPp) structure. By using protein BLAST [23] software three structures 

belonging to Pseudomonas putida were found, with a sequence identity larger than 49% and a 

root-mean-square deviation amounting to 1.8 Å for Cα [24]. We opted for HGDPp, with PDB ID 

http://hgddatabase.cvtisr.sk/
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4AQ2 since, similar to 1EY2, it has no substrate. The structures of holo-HGDHs (PDB ID: 

1EY2) and its homologous HGDPp (PDB ID: 4AQ2) were retrieved from the Protein Data Bank 

(PDB) [25]. Sequence alignment of 1EY2 and 4AQ2 were performed on BLAST web server 

[23], to model the missing residues. The modelling of the loop 348-355 was carried out using a 

homology model approach in which an elucidated structure of HGDPp loop was employed as 

template to model the structure of the protein of interest. The completed monomer structure 

served as a starting point for the reconstruction of the whole HGDHs oligomeric protein on the 

template of the asymmetric units of PDB entry 1EY2. The structure reliability was validated 

using PROCHECK [26]. Additionally, the energy minimization of the hexameric protein was 

performed using GROMACS 5.0.2 [27] (for additional information see Supplementary Methods 

in [21]). 

2.3 Biophysical and evolutionary score generation 

A thorough structural and sequence-based assessment was performed for all the HGD variants to 

account for the potential effects of AKU-causing mutations. Variations in protein-protein 

interactions between the different monomers of the hexamer HGD upon mutation was 

determined using mCSM-PPI2 [28]. Changes in protein stability and folding were determined 

using our in-house tools like mCSM-Stability [29], SDM [30] and  DUET [31]; and 

conformational flexibility changes using the normal mode analysis tool called DynaMut [32]. 

Effects of mutations on binding affinity of HGD to its substrate homogentisic acid were analyzed 

using mCSM-Lig [33]. All these are novel machine learning approaches that use graph-based 

signatures to represent the structural and biochemical environment of the wild-type 3D structure 

of a protein to quantitatively predict the effects of point mutation. To complement the structure-

based methods, sequence-based feature like SNAP2 (Screening for Non-Acceptable 
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Polymorphisms) [34], ConSurf [35] and Provean (Protein Variation Effect Analyzer) [36] were 

used, which provides valuable evolutionary information.  To further enrich the analysis, protein’s 

wild type structural information such as residue depth, dihedral angles of the HGD chain φ (phi) 

and ψ (psi), relative solvent accessibility and secondary structure information were included. 

Changes in molecular interactions such as hydrophobic, ionic, van der Waals’, hydrogen bonds 

and π interactions (cation–π, donor–π, carbon–π, π–π) between the wild type and mutant 

structures were calculated using Arpeggio [37]. Population-based variability was included using 

the missense tolerance ratio (MTR) [38] scoring system. 

2.4 Supervised Machine learning for empirical model building 

The Scikit-learn Python library was used to evaluate different supervised machine learning 

algorithms for classification. These include – K-Nearest Neighbors (KNN), Random Forest, 

Decision Trees, Extra Trees, AdaBoost, Gradient Boosting, SVM, Gaussian Naïve Bayes, and 

Stochastic Gradient Descent. The best performing model was chosen by assessing metrics like 

Matthews correlation co-efficient (MCC), Area Under the Receiver Operating Characteristic 

(AUROC) curve, accuracy, F1-score and precision. The model was trained using stratified 10-

fold cross validation. We carefully split the training and blind test dataset non-redundantly with 

respect to the amino acid residue position.  

To address the issue of imbalance between the pathogenic and non-pathogenic mutations in the 

data, we evaluated the model performance by both under-sampling the non-pathogenic mutations 

and oversampling pathogenic mutations in the training dataset [39]. The performance was 

compared for above mentioned scenario with the normal dataset and best results were obtained 

when the pathogenic mutations were oversampled using the Extra Tree algorithm. Extremely 
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randomized tree classifier (or Extra Tree) is an ensemble machine learning algorithm and a 

variation of the random forest algorithm. The empirical binary classifier built using this 

algorithm highlights a set of structural and evolutionary features which can be used to 

discriminate between AKU-causing and non-pathogenic variations. 

2.5 Webserver development 

We have implemented HGDiscovery as a user-friendly and freely available webserver 

(http://biosig.unimelb.edu.au/hgdiscovery/). The front-end of the server was developed using 

Materialize css framework version 1.0.0, while the back-end was built in Python using the Flask 

framework version 1.0.2. The server is hosted on a Linux server running Apache 2. 

3. Results 

In this work, the 3D protein structure was used to understand the functional and molecular 

consequences of mutations in HGD leading to AKU disease and using the information generated 

from this analysis, a supervised machine learning algorithm was trained to develop a predictive 

tool to determine novel variants which could lead to AKU manifestation. Figure 1 depicts the 

novel methodological pipeline developed. 

http://biosig.unimelb.edu.au/hgdiscovery/


   
 

9 
 

 

Figure 1: HGDiscovery workflow. The first step involves scoping published literature and 

clinical databases to prepare a curated list of non-synonymous HGD mutations.  The second step 

involves generating various structure and sequence-based features for the curated missense 

mutations. In the third step, we use these features in a supervised machine learning algorithm to 

build a binary classifier, which can distinguish between pathogenic and non-pathogenic missense 

mutations. Finally, we develop a free available user-friendly webserver which contains 

phenotypic information on all HGD variants. 

3.1 Structural and Biophysical analysis 

Our in-house biophysical tools mCSM-Stability [29], DUET [31] and DynaMut [32] were used 

to study and understand the impact of missense mutations on protein stability, folding and 

conformational flexibility. These tools are novel machine-learning algorithms which rely on 

graph-based signatures to calculate changes in Gibb’s free energy upon non-synonymous 
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mutations. We observed pathogenic mutations to be associated with highly destabilizing scores 

affecting protein stability and dynamics. The effects of mutation on the substrate binding affinity 

to active site were determined using mCSM-Lig [33]. Pathogenic mutations altered the active / 

substrate binding pocket. mCSM-PPI2 [28] was used to assess changes in protein-protein 

interaction and we observed pathogenic mutations hindered the formation of the symmetrical 

homo-hexamer. Therefore, pathogenic mutations either reduced or disrupted the HGD protein 

activity as seen in Figure 2A. 

 

Figure 2: Boxplot representation of features. A) Structural features. B) Sequence based 

features. C) Wild-type environment features. The non-pathogenic mutations (NP) are 

represented as sea green and pathogenic mutations (P) as dark orange. (*** p < 0.0001, ** p < 

0.001, Welch two sample t-test). 
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3.2 Sequence-based analysis of HGD variants 

ConSurf, SNAP2 and PROVEAN are sequence-based predictors and consider evolutionary 

information to predict functionally important non-synonymous mutation. The prediction helps us 

to understand the biological impact of a mutation on the protein structure. A consistent pattern 

was observed from all of the sequence-based features (Figure 2B). The pathogenic mutations 

were associated with deleterious scores and the non-pathogenic mutations scored neutral. All the 

features were sufficiently statistically significant to be used to train the predictive algorithm to 

build the empirical tool (p-values SNAP2: 4.6 e-14, PROVEAN: 1.1 e-9, ConSurf: 2.4 e-10). 

Population-based variability was considered using the missense tolerance ratio (MTR) scoring 

system. Majority of the pathogenic mutations were in the bottom 25th percentile, reflecting 

intolerance and hence associated with altering protein function. 

3.3 Wild-type structural environment analysis 

The wild-type environment analysis (Figure 2C) includes data on relative solvent accessibility 

(RSA), residue depth, dihedral angles and secondary structure information for both pathogenic 

and non-pathogenic variants. Looking into the relative solvent accessibility values for the 

pathogenic and non-pathogenic mutations (p-value: 2.2 e-8), we see pathogenic mutations tend to 

be less exposed than non-pathogenic variants. It has been previously described that the HGD 

protomer structure constitutes of a pore in which the side chains of large number of residues are 

exposed [24]. These residues are thought to play an important part in the complex HGD catalytic 

function, and we see subtle changes in the side chains as non-synonymous substitution can affect 

the active site functionality [21]. The residue depth values reveal pathogenic mutations are more 

buried than non-pathogenic mutations. This observation is congruous with earlier observation 
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where point mutations on the surface were better tolerated in the globular hexameric HGD 

protein structure. 

3.4 Supervised machine learning algorithm: Extra Tree  

Our features could be grouped into eight distinct categories – protein stability, protein-protein 

interactions, ligand affinity, evolutionary conservation scores, distance parameters, MTR scores, 

molecular interaction and backbone geometry. Each category of features was initially used to 

build and evaluate the performance of the predictive model. After a thorough analysis of the 

individual features, a model was built using all eight distinct categories of features. A robust and 

balanced performance was observed when features were combined together (Table 1, Figure 3).  

Table 1: Performance metrics for the training and blind test dataset 

Dataset AUROC MCC Precision Recall F-score 

Training 0.89 0.58 0.79 0.79 0.79 

Blind test 0.79 0.65 0.86 0.78 0.79 
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Figure 3: Empirical model performance trained on individual class of features. The Extra Tree 

algorithm was trained using stratified 10-fold cross validation using eight distinct class of 

features (first eight bars from left to right; dark blue bars) and with a combination of all features 

(red bar). The AUROC score is low when a single class of feature is used for training the binary 

classifier, however, a significant improvement is noticed when all the eight different features are 

combined to build the model. 

190 non-pathogenic and 111 pathogenic mutations were split into non-redundant training and 

blind test datasets with respect to their amino acid position. Initially we observed poor 

performance on the model’s ability to predict pathogenic mutation. We concluded that the 

training data set was imbalanced as there were more non-pathogenic mutations than pathogenic 

mutations. Oversampling (duplicating) [39] the pathogenic mutations in the training dataset 

improved the metric scores. The final model correctly classified 89% and 79% of mutations in 

the training and blind test datasets respectively (Figure 4). 

Our model was then compared to the existing genetic tools like SIFT, PolyPhen 2 and PMut. The 

AUROC for SIFT, PolyPhen 2 and PMut were 0.75, 0.74 and 0.67 respectively. Comparison 

were also done against PROVEAN and Snap2 (generic missense variant predictors included in 

our predictive modeling). The score obtained for PROVEAN and Snap2 are 0.70 and 0.66 

respectively. Therefore, HGDiscovery (AUROC 0.79) clearly outperforms the available methods 

which are not gene specific. 
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Figure 4: Area Under the Receiver Operating Characteristic (AUCROC) curves of HGD 

classifier.  The AUROC shown for training and test datasets. The model is robust and 

outperforms the existing genetic tools like SIFT, PolyPhen 2 (PPH2), PMut. 

3.5 HGDiscovery Webserver 

HGDiscovery allows for users to query for a single point mutation or submit a list of mutations 

to be analysed in batch. For the “Single Mutation” option users are asked to provide the point 

mutation as a string containing the wild-type residue one-letter code, its corresponding residue 

number and the mutant residue one-letter code. The “Mutation List” option requires that a text 

file is submitted with the list of mutations (one per line). 

The results page for the “Single Mutation” option displays the predicted outcome on the top 

alongside with details of the input mutation, wild-type residue environment, the variables and 

scores used by our predictive model and external links to experimental evidence (when 
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available). An interactive 3D viewer using the NGL-viewer [40] shows the molecular contacts 

generated by Arpeggio [37] for wild-type and mutant structures. 

On the “Mutation List” option, the results are displayed as a downloadable table. Individual 

analysis for each variant on the table can be analysed similarly to “Single Mutation” option by 

clicking the “Details” button. An interactive viewer is also shown at the bottom of the page 

highlighting Pathogenic and Non-pathogenic mutations on the 3D structure. 

 

4. Discussion 

Here we present an empirical classifier, HGDiscovery, which has phenotypic information on all 

known variants of homogentisate 1,2 dioxygenase, (EC 1.13.11.5), an enzyme involved in the 

metabolism of tyrosine, whose deficiency leads to Alkaptonuria [OMIM 203500]. Structural, 

evolutionary and molecular information from known HGD variants were combined to look for 

investigative patterns which could distinguish non-pathogenic from AKU-causing non-

synonymous variants. So along with physiological information from ApreciseKUre platform, an 

additional AKU-dedicated database is available, which provides new insight into functional and 

phenotypic consequences of novel HGD non-synonymous variations, crucial for a genetic 

disease like AKU to support clinical decisions. 

The 3D crystal structure of the HGD active form reveals a highly complex and dynamic 

hexameric organization comprising two disk-like trimers [9]. An intricate network of 

noncovalent interactions is needed to maintain the spatial structure firstly of the protomer, the 

trimer and then the hexamer. This delicate structure presents a very low tolerance to mutations 

and can be easily disrupted mainly by missense variants compromising enzyme function. In case 
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of HGD, missense variants represent approximately 65% of all known AKU substitutions [4, 11, 

41] and 93 distinct amino acid residue positions within the structure are affected by the 111 

AKU-causing missense changes. AKU-causing mutations appear to reduce or disrupt the HGD 

protein activity by destabilizing its structure and altering the active site/substrate binding pocket. 

Our results along with studies on evolutionary conservation revealed that AKU variants were 

mainly located at more conserved residue positions [21] and, consequently, HGD missense 

changes can influence protein folding and stability or interactions with other protomers or 

substrate. Specifically, they can decrease stability of individual protomers, disrupt protomer–

protomer interactions, or modify residues in the active-site region. Thus, when a novel HGD 

missense mutation is identified, it is important to distinguish causal AKU variants from non-

pathogenic ones.  

 

Classical predictors of missense variants include SIFT, SNAP2, PROVEAN and PolyPhen 2. 

These are machine learning algorithms which are trained using sequence and evolutionary 

information. Though these tools are powerful for predictions but they are not gene specific. On 

the other hand, HGDiscovery is an amalgamation of sequence and structure-based features 

specifically built to understand mutations in HGD. To avoid potential biases in the predictive 

model, we used high quality manually curated mutation data, and ensured that mutations used in 

training and testing were not used in the development of computational tools that were 

considered as features. The structure-based features like protein stability, protein-protein 

interactions and conformational flexibility complement the sequence-based features like ConSurf 

and PROVEAN and helps in generating an empirical classifier which is robust and generalizable, 

with minimal loss in performance between training and independent blind tests. Future work will 
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hopefully elucidate whether misclassified mutations were a consequence of noise in the clinical 

data, accuracy of predictive tools used to capture molecular consequences, or a reflection that 

additional biology needs to be incorporated into the model. 

 

It is not uncommon that AKU patients carry compound heterozygotes for two HGD gene 

variants. In such cases, the estimation of the role of each missense variant is not trivial, since the 

hexamer could be assembled with monomers all affected by the same variant (homo-oligomer) 

or by two different ones (heterooligomer) [42]. Variants affecting two different regions could 

have additive destructive effect, on the contrary, the effects could partially compensate for those 

that belong to the same region. However, we do not have any tools able to evaluate such events 

[12]. Compound heterozygosity cannot be interfered with our analysis, leading to 

misclassification of variants. This was the limitation of our study. But with increasing 

availability of genomic and clinical data after patient analysis in future, we can always update 

our tool and re-label the mislabeled non-synonymous variants. 

 

The information available from the above study can be used to develop new treatment strategies, 

for example, use of small molecules. We know that a pathogenic mutation with destabilizing 

scores for stability and flexibility leading to reduced enzyme activity can be rescued partially or 

totally with the help of a small molecule and hence might decrease the severity of the disease 

[21]. Therefore, this framework represents an online tool that can be turned into a best practice 

model for rare diseases. We believe this is not limited to the study of AKU, but it represents a 

proof of principle study that could be applied to other rare diseases, allowing data management, 

analysis and interpretation. Previously, this novel methodological pipeline has been applied to 
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understand and determine novel drug resistant mutations in tuberculosis [43, 44] and even 

performed a real-time analysis [45] on tuberculosis patient. Similarly, HGDiscovery, a user 

friendly freely available tool, could serve as a great additional source of interrogative model 

which helps in understanding the protein structure and function to design tailored drugs and 

effective therapies including gene therapy.  
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