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Abstract While protein-protein interfaces have promised a range of benefits over
conventional sites in drug discovery, they present unique challenges. Here we
describe recent developments that facilitate many aspects of the drug discovery
process – including characterization and classification of interfaces, identifying
druggable sites and strategies for inhibitor development.

12.1 Historical Background

Over the past 40 years structure-guided approaches have become increasingly
central to the discovery and design of new therapeutics. Initially the focus was on
modification of natural substrates or molecules known to bind and inhibit enzymes
or cell surface receptors. Over the past 20 years new hits have been derived largely
from screening using either whole cell assays or enzyme assays with chemical
libraries that may number hundreds of thousands of drug-like compounds. Chemical
libraries have been refined to make them more closely compliant with the Lipinsky
Rule-of-Five that requires molecules to be less large (MW <500), less lipophilic
(LogP <5), less flexible and have the requisite number of hydrogen bond donors
and acceptors, features of molecules that have led to successful therapeutics [1].
This has led to many successful drugs reaching the market but at exponentially
increasing costs.

One feature of drug-discovery campaigns has been the tendency to select targets
that have been defined as “druggable”, often leading to a focus on large enzyme
superfamilies where one member has been target for a successful drug campaign;
examples include aspartic proteinases [2–4], metallo proteinases [5–9], transferases
[10, 11] and protein kinases, all of which have well defined concave active sites
[12]. Designs have often been mechanism based, reflecting either the co-factor or
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an enzyme intermediate or transition state. These have been optimized to useful
leads often using structure-guided approaches. More recently with structures of
membrane proteins available there has interest has revived in the GPCRs and
other members of large membrane protein superfamilies that have been classically
successful targets for phenotypic screening approaches.

The development of fragment-based drug discovery has allowed the more
effective exploration of chemical space for ligands targeting a particular binding site
by using much smaller, chemically diverse libraries composed of smaller molecules,
thereby decreasing complexity. These small molecules, usually between 100 and
300 Da and consistent with the Rule-of-Three [13], have been termed ‘fragments’.
Detection and development of these fragments are complicated by the fact that they
typically bind with much weaker affinities, in the mM range, than larger molecules.
Wells and colleagues pioneered a way around this problem, tethering them by
exploiting thiol-containing fragments that react through a reversible disulphide
bond with a cysteine residue that has been engineered into a protein [14]. This
proved particularly successful for protein-protein interactions or where sites require
trapping a particular conformer. Another approach that has been successfully used
to screen and validate fragment binding has relied on highly sensitive biophysical
methods [15, 16]; including nuclear magnetic resonance (NMR; [17–19]), X-ray
crystallography [20, 21], surface plasmon resonance (SPR; [22–24]), differential
scanning fluorimetry (DSF; [25–27]) or isothermal calorimetry (ITC; [28–31]).
Fragment hits identified from either approach are subsequently elaborated by
crosslinking or ‘growing’ the fragment, while maintaining strong interactions for
each group added. This method has proven very effective when used as part of a
structure-guided approach [18, 32, 33].

12.2 Obtaining Selectivity with Multiprotein Systems

It has become increasingly evident over the past decade that it is difficult to obtain
selectivity, especially with transition and intermediate state analogues of enzymes
or those targeting co-factor binding sites. In particular the challenges with targeting
protein kinases has become particularly clear as pharmaceutical companies have
increased the numbers of superfamily members that can be assayed. Much of
the optimism of getting very good selectivity with protein kinase inhibitors by
exploiting sub-pockets around the ATP binding site has been moderated by the
discovery that sub-clusters of protein kinases with similar co-factor binding sites
are recognised by many of the molecules previously thought to be selective.

One of the ways of improving selectivity is to move away from targeting active
sites towards regulatory multiprotein systems that are critical to cell activity [34].
A particularly fruitful line of investigation has been to target the various protein
interactions that regulate different members of one superfamily. Thus, receptor
tyrosyl kinases have multiple different regulatory extracellular regions that may
interact with secondary receptors as well as their ligands, often leading to clustering
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on the cell surface. For example fibroblast growth factor receptor (FGFR) recognizes
the FGF ligand at a binding site between extracellular domains d2 and d3 but a
secondary receptor the proteoglycan heparan sulphate is also critical for activity
and tends to mediate clustering of receptor and ligand [35–38]. The MET receptor
tyrosyl kinase differs in its extracellular region that recognizes a very different
protein growth factor, HGF/SF [39–41]; in this case the heparan sulphate secondary
receptor is important for some splice forms. Other receptor tyrosyl kinases such
as epidermal growth factor (EGF) receptor and the insulin receptor are related
evolutionarily but have different domain organizations of the region recognizing
the ligands. These systems give opportunities for greater selectivity of inhibitors,
either by targeting protein-protein interfaces in the assemblies directly (orthosteric
inhibitors; see ref [42] for review) or indirectly through allosteric binding sites that
stabilize conformers incommensurate with ligand binding at another site, as for
example identified for the FGF receptor [43].

Intracellular signaling pathways are also regulated by multiprotein systems of
similar complexity. The model of receptor activation that leads to a pathway of
interactions, somewhat resembling the metabolic pathways familiar to biochemists,
appears to be giving way to the idea that large multiprotein systems often assemble
to regulate many intracellular kinases and these mediate interactions between the
cell membrane and various cytoplasmic and nuclear targets [44]. In the nucleus
complex regulatory systems, for example mediating DNA double-strand break
repair, involve multi-component systems. Non-homologous end-joining (NHEJ)
requires many factors: the Ku70 and 80 heterodimer that assembles on double-strand
breaks (DSBs); the scaffolding proteins XRCC4 and XLF which interact with Ku;
the key protein for recruiting NHEJ proteins at DNA ends, the ligase (DNA ligase
IV) that joins the ends [45]; and the DNA-PKcs that is involved in signalling and
regulating DNA repair. These proteins assemble together with other proteins such as
the nuclease Artemis that also has binding sites for the ligase and DNA- PKcs [46].
Ku interacts directly with DNA-PKcs [47, 48], DNA ligase IV [49] and XLF [50]
in a DNA-dependent manner, and recruits NHEJ proteins in vivo only when DSBs
are generated.

Such complex multiprotein assemblies at the membrane, in the cytoplasm and
in the nucleus often regulate cellular processes through co-location of various
critical components. However, they also likely play a role in increasing signal
to noise. Although binary interactions between two proteins would often occur
opportunistically in the cell, especially in the cell membrane or in the limited
environment of the nucleus or cytoplasm, a weak binary interaction followed by
interactions of further components would give a cooperative but reversible assembly
of a large multiprotein complex, allowing selective signaling regulation in the cell
[44].

There are some occasions where binary systems are required in signaling and
regulatory processes. These are often mediated by concerted folding and binding
of one protein. This was recognized more than 30 years ago in the polypeptide
hormones like glucagon which are disordered in solution but can associate with
the receptor in a cooperatively formed secondary or supersecondary structure, often
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first binding an anchor residue, which forms a hotspot of the interaction [51]. Such
concerted-folding-and-binding is found widely in intracellular systems. A good
example is BRCA2 BRC4 repeat interaction with RAD51, in which a phenylalanine,
the anchor residue, recognizes a well-defined pocket on the RAD51 [52]. This then
also allows a much smaller pocket, a second hotspot to be recognized, the interaction
probably being driven by unhappy water, leading to high selectivity for alanine.
The remaining part of the BRC4 repeat then folds onto the surface of the RAD51
through a weaker and less well defined interaction involving folding and binding
of a helix onto a further hotspot. The cooperative folding and binding constitutes
provides a second mechanism for obtaining selectivity and has been widely studied
for intracellular systems by Wright and coworkers [53].

The two mechanisms of gaining selectivity – co-operative assembly of multi
protein regulatory assemblies or co-operative folding and binding – both involve
protein-protein interactions. Here we review these interactions, focusing on how
they are defined experimentally, the nature of the interfaces that mediate the
interactions, the effects of mutations at protein-protein interfaces and their roles
in genetic diseases, and the druggability of either the isolated interfaces or the
interfaces themselves.

12.3 How to Define Structures of Multiprotein Assemblies

The complex nature of many of the regulatory assemblies demands different
techniques to characterize the stoichiometry of the interactions that vary in space
and time. These range quite broadly in the resolution and detail that they provide:
from assessments of stoichiometries and molecular radii, to overall topology of a
complex provided by small angle X-ray scattering and electron microscopy, to the
atomic resolution provided by X-ray crystallography and increasingly single particle
cryo-electron microscopy (Fig. 12.1a). The information obtained from these diverse
techniques is often complementary and help provide an overall understanding of a
given complex.

Nanospray mass spectrometry (MS) can accurately determine stoichiometry of
macromolecular complexes as large as a few MDa [54]. An advantage of the
technique is that samples do not need to be homogenous, and it can detect different
oligomeric states existing in equilibrium together. Hence, it is very useful for macro-
molecules that form dynamic complexes. Furthermore, nanospray MS can provide
topological information of macromolecular assembles [55]. One of limitations is
the buffer, which should be volatile, for example ammonium acetate. If nonvolatile
chemicals are essential for the proteins or complex, alternative methods to study
stoichiometry may be required. These include analytical ultracentrifugation (AUC)
and size-exclusion chromatography combined with multi-angle light scattering
(SEC-MALS), techniques that have been vital in establishing the oligomeric states
of proteins previously thought to be monomeric, and the stoichiometry of their
modulation by small molecules [56–58].
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Fig. 12.1 Complementary-biophysical analyses provide different resolutions of structural infor-
mation. (a) Comparison of biophysical techniques and resolutions. Structures of DNA-PKcs
(BioIsis ID: 1DPKCY) [70], DNA-PK (EMDB ID: EMD-1210) [72], DNA-PKcs in complex with
Ku80 C-terminus (PDB ID: 3KGV) [46], LigIV in complex with Artemis (PDB code ID: 3W1B)
[85] were used to show examples of structural information obtained from SAXS, negative-stain EM
and X-ray crystallography (low and high resolution). (b) Structure of the XRCC4/XLF filament.
The structure of the XRCC4 (dark grey)/XLF (light grey) complex shows an alternative left-handed
filament from two different views

Small angle X-ray scattering (SAXS) can also be used to determine stoichiometry
of target proteins. A recent advance in SAXS allowed us to measure approximate
molecular weights of only the proteins of interest from scattering data [59]. SAXS
is also a good way to get a general idea of the solution structure and is particularly
useful if structures of individual protein components are available [60, 61]. It can
also be used to study protein complexes that have dynamic protein-protein interac-
tions by combining with size-exclusion chromatography [62]. X-ray crystallography
has proved the mainstay for defining complexes although interactions with smaller
peptide ligands are often also accessible through NMR. Increasingly high-resolution
cryoelectron microscopy is becoming very powerful and can even recognize small
ligands binding to complex structures [63]. Isothermal calorimetry can be used to
measure the thermodynamics of the interactions and surface plasmon resonance the
kinetics.

For an example of the characterization of increasingly complex structures let us
return to NHEJ, involved in repair of DNA-double-strand breaks and introduced
above. The kinase catalytic subunit, DNA-PKcs, is a 460 kDa protein containing a
long HEAT-repeat region of about 3,000 of the total 4,000 amino acid residues [64].
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The C-terminal kinase region has ’-helical FAT and FATC domains, in addition to
the kinase domain. The high-resolution structure of the kinase region of mTOR,
which is a paralog of DNA-PKcs, has a similar structure and was defined at high
resolution X-ray crystallography [65]. The structure of the DNA-PK complex,
which includes the Ku hetero-dimer, has been studied using EM, SAXS and
X-ray crystallography. Early EM structures of DNA-PKcs identified two regions:
crown/head and base/palm [66–68]. The resolution of a cryo-EM structure of DNA-
PKcs was extended to 7 Å resolution many years later, revealing the secondary
structure of the molecule [69]; however, the crystal structure of DNA-PKcs was
required to determine unequivocally the location of the kinase [46]. The crystal
structure of DNA-PKcs in complex with the C-terminal of Ku80 at 6.6 Å resolution
showed that the HEAT repeats form a circular structure, consistent with the early
EM models of DNA-PKcs. Recent EM and SAXS studies of DNA-PKcs showed
that it undergoes a large conformational change upon autophosphorylation [70, 71],
which is difficult to study using crystallography. Although the structure of whole
DNA-PK complex has been investigated using EM and SAXS [70, 72], it remains
unresolved where Ku70/80 binds on DNA-PKcs but both techniques consistently
showed a hetero-hexameric complex of these proteins at two DNA ends. DNA-
PK on DNA ends was also observed by atomic force microscopy (AFM) [73, 74].
AFM is particularly useful to see where proteins are bound on DNA because it
can visualize naked DNA. Since these techniques are complementary to each other,
accumulated structural studies of DNA-PK provide insights into how the complex
binds DNA spatially.

In addition to DNA-PK, the structure of the ligase holoenzyme has been studied
extensively and it provides a good example as to how the techniques complement
each other. The DNA ligase IV, XRCC4 and XLF complex contributes to the
last step of NHEJ [75]. Crystal structures of complexes of XRCC4 and XLF,
structural paralogs that are both homodimers, show that they form a left-handed
helical filament (Fig. 12.1b) [76–79]. A concentration-dependent formation of the
filament is shown by gel filtration, nanospray mass spectrometry and SAXS [79]
and a scanning force microscopy of the complex demonstrates that DNA stabilizes
filament formation [76]. Interestingly, filament formation is inhibited by the strong
and stable LigIV interaction with XRCC4 [80], likely due to the catalytic domains
of LigIV, because LigIV/XRCC4 without the domains still forms the filament
with XLF. SAXS studies of LigIV/XRCC4 indicate that the catalytic domains are
flexibly tethered to a tandem repeat of BRCT domains [75, 81], which interact with
XRCC4 [82, 83]. Thus, the dynamic nature of the catalytic domains prevents XLF
from interacting with XRCC4. Negative-stain EM of LigIV/XRCC4 shows that the
catalytic region is fixed at the N-terminal head domain of XRCC4 [84].

DNA-PK and ligase holoenzymes together with other NHEJ proteins such as
Artemis are present at DNA ends. However, the dynamic nature of these protein-
protein interactions makes it difficult to study structurally, which has high demand
on homogeneity. Since we have atomic structures of the individual core NHEJ
proteins, cryo-EM may be a reasonable technique to observe the entire complex.
A key point for the success will depend upon how much we can stabilize the
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complex. For this optimization, nanospray MS and other techniques will help inform
distribution of stoichiometry and stability of the complex.

These challenges in defining the spatial and temporal interactions of the NHEJ
system are likely to be common to many of the multicomponent systems in the cell.
Nevertheless they provide a basis for understanding their roles in cell regulation and
signaling, and some data that is proving useful in the design of chemical tools that
can be used to selectively modulate cell activity and provide the first clues about
how to proceed in discovering candidate drugs.

12.4 Organization of PPI Information: Description of Piccolo
and Credo

The wealth of data publicly available in the PDB [86] allows structural comparison
of interacting proteins with a complete range of partners (solvents, small molecules,
small peptides, saccharides, nucleic acids and other proteins). However, in order
to use this information meaningfully and efficiently for drug discovery, the data in
the PDB, a flat-file-based databank, need to be better organized. Efforts to do this
range from resources specialized in one type of structural interaction, like beta-sheet
or alpha-helix motifs [87, 88] or domain-domain interactions [89] to resources that
emphasize the mechanistic aspects of interactions, like the ASD Allosteric Database
[90, 91].

However, integrating specialized resources is challenging, as we discovered with
the sister databases developed in our laboratory, describing structural interactions
with atomic detail for protein-protein (PICCOLO, [92]), protein-nucleic acid (BIPA,
[93]) and protein-ligand complexes (CREDO, [94]). A new CREDO database [95]
has now been developed with the aim of enclosing under a single resource not
only all pairwise atomic interactions of inter- and intra- molecular complexes from
the PDB, but also disparate data relevant to drug discovery; these include SNP
databases (OMIM and COSMIC [96, 97]), mappings to sequence data from UniProt
[98] and EnsEMBL [99], ChEMBL [100] binding data and the small molecules
fragmented with an enhanced RECAP [101] algorithm. In addition to providing
relational data structures for storing protein structure data at model, chain, residue,
ligand and atom level, CREDO provides chemoinformatic routines to analyze small
molecule data, such as fingerprint generation, similarity and substructure searching
and chemical fragmentation. Where entities in PDB structures are involved in non-
bonding interactions, such as in protein-ligand and protein-protein interactions,
pairwise atomic contacts are explicitly characterized, for example as hydrogen
bonding, ion pair, metal complex or specific aromatic ring interactions. These
pairwise atomic contacts are stored as structural interaction fingerprint SIFTs
[102], used for clustering interactions to identify common patterns or to study
molecular recognition, so making CREDO a comprehensive analysis platform for
drug discovery. The information on intermolecular interactions is integrated with
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further chemical and biological data. The database implements useful data structures
and algorithms such as cheminformatics routines to create a comprehensive analysis
platform for drug discovery. The database can be accessed through a web-based
interface, downloads of data sets and web services at http://structure.bioc.cam.ac.
uk/credo.

The information in CREDO allows the user to move from target to target using a
residue map (that links sequence to structure) to UniProt [98], or to analyze the intra-
residue network interactions at the protein interfaces for correlation with hotspots.

12.5 Distribution of Protein-Protein Interactions
and Pocket Size

Organizing the wealth of publicly available structural protein-protein interaction
(PPI) data has made it clear that PPI interfaces, the chemical surfaces through which
proteins interact with each other, come in many different shapes and sizes [92].
Multiprotein complexes can assemble from globular protomers, interacting with
partners to form homo-complexes of sequence-and-structure-identical protomers;
between partners of different sequence to form hetero-complexes, or between glob-
ular partners and short peptides or even longer polypeptides that are often disordered
before binding [103]. There are also examples of peptide-peptide associations [104].
The range of different domains and peptides involved in interactions provides
diversity in PPI binding sites [103, 105, 106]. While PPI interfaces have historically
been described as being “flat and featureless” the growing number of examples of
orthosteric PPI modulators [107], which compete for the binding site of one protein
to another, speaks to the fact that not all PPI associations are as featureless and
un-amenable to chemical modulation as was sometimes thought.

Concavity is generally accepted as a feature of many protein-ligand interactions,
where binding deep into a protein’s surface may maximize the interaction area
between a protein and a small-molecule ligand, and where ligand binding may be
entropically favorable through the ejection of water molecules from the protein’s
solvation shell into bulk solvent [108, 109]. Computational analyses have shown
that where PPI interfaces have been successfully modulated, surface concavity
at the binding site usually exists not in the single, large volume cavities found
in “traditional” drug targets, but rather in multiple small, geometrically clustered
concavities [110]. Examples of these kinds of concavities at interfaces have been
identified as being used as “complemented pockets” by protein partners [111]
involving deeply bound single residues. The concept is related to the “hotspot”
hypothesis that single, buried residues or clusters of residues contribute a large
proportion of interface interaction energy [112, 113].

The similar “anchor” hypothesis states that energetically important, solvent-
buried residues at the interface are involved in initial, fast lock-and-key type
recognition, followed by a more gradual relaxation of peripheral residues by an

http://structure.bioc.cam.ac.uk/credo
http://structure.bioc.cam.ac.uk/credo
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induced fit mechanism to form the mature interface [114, 115]. Exploitation of these
anchor sites has been used in the design of orthosteric inhibitors [116, 117]. Protein-
peptide interfaces may be particularly amenable to orthosteric modulation over other
associations, at least in part due to their tendency to consist of single interacting
“segments” where a linear binding epitope contributes a large proportion of the
binding free energy of the interface [118], and the conformation of the globular
partner is typically fixed such that the surface presents concavity to a disordered
binding partner which subsequently folds on binding [103, 111]. The extensive
buried surface area no doubt contributes to the affinity and compensates for the loss
of entropy on folding. However, even in larger, more globular interfaces, there is a
tendency for a single linear epitope to contribute large proportions of the interface’s
interaction energy [119, 120].

Much effort both in academia and industry has focused on the modulation of
pairwise PPIs through the development of competitive, orthosteric inhibitors of
interface formation. Although many interactions are dimeric, the disruption of a
dimer forming part of a larger complex is likely to disrupt the assembly of that
complex. As discussed above many biological systems involve the coordination
of multiple protomers through strong but reversible cooperative binding to achieve
high signal-to-noise ratios in cellular processes. There are advantages to attempting
to chemically modulate multiprotein systems by targeting pre-bound structures, to
either stabilize the complex to have a therapeutic effect or to ablate the formation of
a higher order complex. “Interfacial inhibitors”, or stabilizers, binding juxtaposed
to a PPI binding site have been explored as a potential PPI modulation strategy
[121]; in part successes may stem from the existence of better defined binding sites
in the periphery of an existing interface [122]. There is also increasing interest in
allosteric strategies, where the binding site is distal to the interface, for disrupting
multiple protein assembly.

Systematic analysis in our laboratory of over 9,000 pairwise, non-overlapping
PPI interfaces, organized in our databases and filtered for structure quality, has
indicated that protein-peptide interfaces make more extensive use of concavity than
other kinds of interfaces, both on average and at their deepest. However, in spite
of being flatter on average, a large proportion of globular-globular interfaces make
use of small pockets of concavity, through deeply bound residues. The landscapes
of PPI interface surfaces make more subtle use of concavity than traditional targets,
therefore requiring innovative approaches for drug discovery.

12.6 Mutations & Interfaces: Their Role in Diseases

Mutations are a natural consequence of evolution, and understanding how they
interact with their partners can yield insights into protein function, diseases and
help guide a range of experimental efforts including protein engineering and drug
development. The first efforts to understand the effects of mutations focused on
their ability to alter protein folding and stability. The pioneering method SDM
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[123, 124] used a statistical potential energy function, derived from environment-
specific residue propensities in structural families [125], in order to predict the
change in free energy of folding upon mutation for a given protein.

The leap in computational power provided by new architectures, together with
the rapid increase in protein experimental and structural data generation, has
created new opportunities for enhancing the existing approaches (for a review of
available methods see [126]). This scenario led to the development of mCSM
[127], a novel machine learning method which is proving to be significantly more
accurate and scalable than previous approaches. mCSM uses the concept of graph-
based signatures to represent the three-dimensional environment of a wild-type
residue, which are then used to train highly accurate predictive models, capable
of quantitatively assessing the effects of mutations. These signatures have been
proposed previously and successfully adapted in a range of applications including:
protein inter-residue analysis [128], protein automatic structural classification and
function prediction [129] and receptor-based ligand prediction [130]. However all
these methods present only a portion of the story necessary to understand fully the
effects of mutations as they did not take into account the multitude of interactions
vital for normal cellular function. In this context, tools for assessing the impact of
mutations on protein-protein interfaces are necessary.

Some of the early approaches to predict the effect of mutations on the binding
free energy of specific protein-protein complexes included energy-function based
approaches [131–133] and more computationally intensive calculations [134–141].
These methods, however, focused on mutations to alanine, which will be discussed
further below. While alanine scanning is extremely important experimentally, in
order to understand the broad array of genetic variations, and mutations in diseases,
a more challenging demand was to develop methods capable of predicting the effects
of any mutation. To this end we developed mCSM-PPI (http://bleoberis.bioc.cam.ac.
uk/mcsm/protein_protein) which employs the mCSM signatures used as evidence to
train predictive models based on experimentally measured effects on protein-protein
affinity from the SKEMPI database [142]. The method has shown to be effective,
performing extremely well in comparison with other methods, achieving a Pearson’s
correlation coefficient of up to 0.8 (as shown in Table 12.1).

Other methods have been recently described including BeAtMuSiC [143], ZEMu
[144] and those described by Li et al. [145] and Moal et al. [146]. Since these
methods were developed concurrently, a comparative analysis of their relative
performance is of general interest. As shown in Table 12.1, mCSM can outperform
methods that employ a range of different techniques, some of them computationally
intensive, such as Molecular Dynamics and Molecular Mechanics.

Structure-based methods like mCSM-PPI are essential tools for understanding
the relation between the quantitative effects of mutations in protein-protein affinity
and their roles in Mendelian diseases and in cancer, as well as to shed light on the
understanding of their mechanism of action.

One example of the usefulness of such methods is the recently published work
of Gossage et al. [147] of mutations on von Hippel-Lindau disease (VHL) and
their relation with propensity or risk of developing renal cell carcinoma (RCC).

http://bleoberis.bioc.cam.ac.uk/mcsm/protein_protein
http://bleoberis.bioc.cam.ac.uk/mcsm/protein_protein
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Table 12.1 Predicting the effects of mutations on protein-protein interactions

Method Technique
Data set
(# of mutations)

Correlation
(SE)

mCSM-PPI
performance
on similar
data set Web server Refs.

mCSM-PPI Structural
signatures –
ML

SKEMPI (2007) 0.80 (1.25) N/A Yes [127]

BeAtMuSiC Statistical
potentials

SKEMPI (2007) 0.40 (1.80) 0.58 (1.55) Yes [143]

FoldX Energy
function

SKEMPI (1844) 0.37 (2.14) 0.58 (1.55) Yes [131]

Li et al. MD SKEMPI (1844) 0.58 (1.55) 0.58 (1.55) No [145]
ZEMu MD SKEMPI (1254) 0.51 (1.34) 0.58 (1.55) No [144]
Moal et al. Contact

potentials
SKEMPI (1949) 0.73 (NR) 0.80 (1.25) No [146]

Relative performance of computational approaches to predict the effect of mutations on the binding
free energy of protein-protein complexes
ML machine learning, MD molecular dynamics, NR not reported

An integrated computational approach was developed using structural information
to understand the relation between the severity of phenotype, and the predicted
effects of mutations on the stability of the pVHL protein and the change in affinity
between pVHL and its protein partners (elongin B, elongin C and HIF-’ peptide).
The method, called Symphony (http://structure.bioc.cam.ac.uk/symphony), was
able to predict the effects of mutations associated with RCC with high levels of
sensitivity and specificity. A database of predictions for mutations not yet observed
has also been developed.

mCSM-PPI has also been capable of giving a rationale for the affects of
mutations on PPIs that are related to inherited RCC in other genes, including the
P15-CDK6 complex. Figure 12.2a, b show examples of the affects of mutations on
the stability of pVHL-HIF-’ and P15-CDK6 complexes that were correctly iden-
tified by mCSM-PPI to dramatically reduce protein-protein affinity and potentially
disrupt the complex.

Another successful application of computational predictors for understanding
the mechanism of action of mutations in Mendelian diseases is the study of
alkaptonuria (AKU). AKU is a rare, inherited metabolic disease caused by defective
homogentisate 1,2-dioxygenase (HGD) as a result of mutations that disrupt its
activity, many of them occurring in the protein-protein interfaces of its homo-
hexamer (as the example shown in Fig. 12.2c). By using the predictions obtained
by DUET [148] and mCSM-PPI, the mutations described in AKU were classified
as belonging to one of three possible mechanism classes: protomer-destabilizing,
PPI-destabilizing and active site mutations. Figure 12.2d depicts the distributions of
these mutations on the structure of the human HGD.

http://structure.bioc.cam.ac.uk/symphony
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Fig. 12.2 Structural analysis of effects of mutations on PPIs and their role in cancer and
Mendelian diseases. Panels (a–c) depict the interaction network made by important interface
residues mutated in von Hippel-Lindau disease, alkaptonuria and renal cell carcinoma, respectively,
whose effects were predicted to be highly destabilizing by mCSM-PPI. The chains of the binding
partners are shown in dark grey. Panel (a) shows the interactions made by ARG107 in the interface
between VHL and the HIF-2’ peptide. Mutation to Proline will perturb local secondary structure
and disrupt strong intra and inter-molecular hydrogen bonds and charged interactions. Panel (b)
shows the TYR40 residue of the human HGD, which forms strong inter- and intra-molecular pi-pi
interactions that are lost upon mutation to serine in AKU. Panel (c) shows the P15-CDK6 complex.
Mutation of residue ASP86 on P15 to asparagine results in a loss of a charged interaction at the
core of the interface. Panel (d) highlights a selection of AKU mutations within human HGD that
mCSM-PPI predicts will reduce protein-protein affinity, leading to a loss of enzyme activity. These
are spread across the extensive binding interface

12.7 Mutations & Interfaces: Hotspot Identification

Experimental and computational alanine scanning have been popular approaches to
identifying amino acids that are critical for the formation of the complex, termed
hotspot residues [112, 132, 133]. Robetta alanine scanning defines hotspot residues
as those that upon mutation to alanine are predicted to decrease the binding energy
by at least ��G 1.0 kcal/mol.

Using mCSM-PPI, an alanine scan of 743 mutations within 19 different protein-
protein complexes was performed to identify potential hotspot residues. The
distribution of changes (Fig. 12.3) in binding free energy are consistent with
the hypothesis that the loss of hotspot residues would have a significant effect
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Fig. 12.3 Density
distribution of protein-protein
affinity change predictions by
mCSM-PPI for mutations that
were experimentally assigned
as hotspots. While the
majority of the neutral
mutations (dotted-line curve)
were predicted to have little
impact, most of the hotspots
(solid-line curve) were
predicted to have a significant
destabilizing effect on the
protein-protein complex

upon the affinity of two binding partners. The predicted change in binding energy
showed that mCSM-PPI predictions correlated strongly with the experimental data
(r > 0.7). This indicates that mCSM-PPI could also be a powerful tool for hotspot
identification.

12.8 Examples of Success Using FBDD to Target PPI’s

PPI’s have been successfully modulated by compounds that mimic protein interac-
tion elements, including proteomimetics [149], foldamers [150], peptide aptamers
[151], antibodies [152, 153] and affibodies [154], where unfavorable pharmacoki-
netic properties are modified by the use of drug carriers or chemical modifications
like PEGylation [155]. However, the development of more traditional pharma-
ceutical small molecule modulators, which remains highly desired, is proving a
viable strategy, as demonstrated by several small molecule PPI inhibitors currently
used therapeutically including the anti-HIV drug Maraviroc, an inhibitor of the
CCR5-gp120 interaction, and Titrobifan, a glycoprotein IIb/IIIa inhibitor used in
cardiovascular disease.

Two main resources store small molecule data modulating protein interfaces: the
2P2I database [156] dedicated to structural complexes of orthosteric PPI inhibitors
of PPI and the TIMBAL database [157] that holds small molecule data for PPI
modulators (inhibitors and stabilizers). Comparison of the original contents of the
TIMBAL database [158] with known drugs and standard screening compounds
revealed that small molecules disturbing protein assemblies were bigger, more
lipophilic and with less polar features than the drugs and standard synthetic
molecules. Analysis of the contacts these inhibitors made when the structure was
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Fig. 12.4 Bcl-XL. Left: pdb code 2BZW, Bcl-XL (surface representation) bound to BAD
(cartoon representation). Right: pdb code 2YXJ, Bcl-XL (surface representation) with the Abbott
compound ABT-737 (sticks representation). Only polar contacts are shown

available corroborated that on average these small molecules were engaging mainly
in hydrophobic contacts with the protein target.

These observations raised the question as to whether the lipophilicity is a
requirement for binding to protein-protein interfaces or a reflection of common
sins in drug discovery [159]. Comparison of protein complexes with PPI inhibitors,
including synthetic and natural small molecules, small peptides and other proteins,
highlighted the fact that protein complexes and natural molecules tend to interact
with higher ratios of polar to non-polar contacts than synthetic small molecules.
Contrasting the few cases where structures exist for both the protein-protein and
the protein-PPI inhibitor complexes, synthetic small molecules were shown to miss
available polar contact opportunities at the protein interface [160]. Figure 12.4
shows a graphical view of this concept.

When a structure is available, however, it can provide very useful insight and
plays a crucial role in the development of fragment hits. The cytokine interleukin-2
(IL-2) induces T cell proliferation through binding to its heterotrimeric receptor. The
structure of a small molecule inhibitor of this interaction identified by Hoffman-La
Roche revealed that binding to IL-2 induced a significant conformational change
to create a hydrophobic binding pocket that could accommodate the inhibitor
[161]. This region overlapped with hotspot residues identified by alanine scanning
mutagenesis [162, 163]. Based on this information, Wells and colleagues created a
series of 11 cysteine mutants to identify small molecule inhibitors through tethering
[161]. This identified a number of fragments that were shown to bind with sub-
micromolar affinity. Medicinal chemistry was able to improve this affinity further
to the low micromolar range. The crystal structures of the complexes, however,
revealed two fragments bound to close but distinct sites. Linking these fragments
together, they were able to achieve nanomolar inhibitors of the IL-2 interaction.

An example of the power of biophysical FBDD approaches to target a PPI is
the development of inhibitors of the interaction between the human recombinase
RAD51 and BRCA2 [52, 164]. Initial screening of a fragment library by thermal
shift, followed by validation using NMR and X-ray crystallography resulted in the
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structures of approximately 80 fragments bound to RAD51, which disrupted the
interaction with BRAC2. With structural information in hand, fragment growing or
fragment linking can be employed to identify larger compounds from one or more
fragment starting points. In general, as a fragment is expanded to make additional
interactions in a fragment-based drug discovery campaign, affinities tend to be
increased by 3–5 orders of magnitude [165–169]. The growth of the fragments
bound to RAD51 was guided by the co-crystallized structures together with the
structure of RAD51 in complex with the BRC4 region of BRAC2, and was able
to improve the KD from the mM to sub mM range [52]. More recently nanomolar
affinities have been achieved by the Cambridge Group.

How can we tackle these challenging interfaces using chemistry that brings more
polar specific contacts into play? On the one hand, interfaces where a flexible
peptide binds to a continuous epitope in a concerted folding seem to offer more
opportunities for “ligandability” [170] than preformed globular protein partners
assemblies [103]. On the other hand, fragment-based approaches [171, 172] give
pivotal advantages for these targets as they identify the hotspots by binding and
yield less hydrophobic hits [173].

12.9 Final Thoughts

PPI’s play a crucial role within the cell and their perturbation can lead to a range
of diseases. They also present attractive and selective sites for drug development.
Significant improvements in methodology have allowed the development of some
highly selective modulators. Although targeting protein-protein interfaces still
presents considerable technical challenges, as our understanding of these sites
continues to expand, so too will our ability to modulate them selectively.
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