
RESEARCH ARTICLE

Variation in Human Cytochrome P-450 Drug-
Metabolism Genes: A Gateway to the
Understanding of Plasmodium vivax Relapses
Ana Carolina Rios Silvino1, Gabriel Luiz Costa1, Flávia Carolina Faustino de Araújo1,
David Benjamin Ascher2,3, Douglas Eduardo Valente Pires2, Cor Jesus
Fernandes Fontes4, Luzia Helena Carvalho1, Cristiana Ferreira Alves de Brito1, Tais
Nobrega Sousa1*

1 Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou,
Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil, 2 Biosystems Informatics
Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte,
Minas Gerais, Brazil, 3 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom,
4 Hospital Julio Muller, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil

* tais@cpqrr.fiocruz.br

Abstract
Although Plasmodium vivax relapses are classically associated with hypnozoite activation,

it has been proposed that a proportion of these cases are due to primaquine (PQ) treatment

failure caused by polymorphisms in cytochrome P-450 2D6 (CYP2D6). Here, we present

evidence that CYP2D6 polymorphisms are implicated in PQ failure, which was reinforced

by findings in genetically similar parasites, and may explain a number of vivax relapses.
Using a computational approach, these polymorphisms were predicted to affect the activity

of CYP2D6 through changes in the structural stability that could lead to disruption of the

PQ-enzyme interactions. Furthermore, because PQ is co-administered with chloroquine

(CQ), we investigated whether CQ-impaired metabolism by cytochrome P-450 2C8

(CYP2C8) could also contribute to vivax recurrences. Our results show that CYP2C8-

mutated patients frequently relapsed early (<42 days) and had a higher proportion of geneti-

cally similar parasites, suggesting the possibility of recrudescence due to CQ therapeutic

failure. These results highlight the importance of pharmacogenetic studies as a tool to moni-

tor the efficacy of antimalarial therapy.

Introduction
Several factors have highlighted the importance of malaria caused by Plasmodium vivax, such
as the spread of parasites that are resistant to available drugs [1]. In addition, the concept of
vivax malaria as a benign disease has changed due to the description of severe cases and even
deaths [2, 3]. Finally, dormant forms of the parasite that reside in the liver, i.e., hypnozoites, act
as a reservoir for the disease and have hindered the control of malaria caused by P. vivax.
Accordingly, it has been estimated that relapses cause between 50 and 80% of P. vivax infec-
tions in children living in areas with hyperendemic transmission [4–6].
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There has been much speculation about P. vivax relapse and the factors responsible for its
hypnozoite activation, including the saliva components of biting mosquitoes [7] and the sys-
temic febrile illnesses associated with other parasitic or bacterial infections [8]. Additionally,
the number of sporozoites inoculated by the anopheline mosquito may be an important deter-
minant of both the timing and the number of relapses [9, 10]. In general, while parasites from
tropical zones exhibit a short latent period before frequent episodes of relapse, parasites from
temperate zones show a long latent period followed by few relapses [11]. Previous clinical stud-
ies showed that the majority of relapse episodes were caused by a parasite population distinct
from the initial infection [12–14]. It has been proposed that in endemic areas, previous infec-
tions could also be a source of heterologous latent hypnozoites. Accordingly, a prospective
infant cohort study in Thailand demonstrated that the first P. vivax relapses of life are usually
genetically homologous [15]. It is also important to consider that malaria infection can be
induced by the inoculation of more than one clone of sporozoites, and thus, genetically distinct
hypnozoites can remain dormant until some are activated [12].

Beyond occurrence of the classical relapses caused by hypnozoite activation, recent findings
suggest that some relapses could be due to the ineffectiveness of treatment with the drug used
to kill the hypnozoites, primaquine (PQ) [16, 17]. PQ is the only FDA-approved drug that is
currently indicated to treat relapsing strains of P. vivax, and its efficacy is thought to involve
the formation of redox-active metabolites against the hypnozoites in the liver [18, 19]. The
metabolism of PQ to its active metabolites has been shown to be dependent on cytochrome P-
450 2D6 (CYP2D6) [18, 20, 21], which is an important member of the cytochrome P-450
superfamily responsible for the metabolism of approximately 25% of clinically used drugs [22].
Recently, it was demonstrated in both animal models and humans that decreased CYP2D6
activity has a significant effect on PQ metabolism and clearance [16, 17, 23]. The CYP2D6 gene
has a high allelic heterogeneity that results in great inter-individual variations in the level and
activity of the enzyme [24, 25]. The number of functional gene copies of CYP2D6 is an impor-
tant determinant of drug clearance for many substrates of this enzyme [26]. Subjects who have
multiple gene copies (UM phenotype) will metabolize drugs more rapidly and, thus, have a
potential risk of treatment failure because therapeutic plasma levels will not be achieved at the
usual drug dosage [22]. However, for prodrugs such as PQ, it is possible that UM patients may
derive a greater therapeutic benefit than other patients, but this has not been tested.

In this context, we sought to investigate the possible contribution of CYP2D6 variation to
relapses of vivax malaria. Specifically, we evaluated the frequency of CYP2D6 polymorphisms
associated with decreased enzyme function in two well-defined groups differing in their num-
ber of relapses (single- and multiple-relapses). Because these individuals were travelers who
were returning home after visiting malaria transmission areas, it was an excellent opportunity
to investigate the contribution of individual genetic variation to P. vivax relapses. Furthermore,
using a computational approach, we predicted the effect of the identified CYP2D6 polymor-
phisms on enzyme stability and interaction with PQ.

In addition to relapse, P. vivax recurrence can be caused by reinfection or recrudescence as
a consequence of blood-stage drug treatment failure. The drug that is commonly used to kill
the blood-stage of P. vivax is chloroquine (CQ), which is metabolized mainly by cytochrome
P-450 2C8 (CYP2C8) [27, 28]. For P. falciparum, mutations in CYP2C8 that confer a poor
metabolizer (PM) phenotype may influence the parasite selection dynamics [29]. The CQ
impaired metabolism may result in a longer CQ half-life and, thus, a longer parasite exposure
to subtherapeutic levels of the drug. Here, to investigate the possibility that anti-schizonticidal
therapy failure of CQ could also contribute to the observed P. vivax recurrences, we analyzed
the polymorphisms in CYP2C8 that are predicted to determine a low CQmetabolizer
phenotype.
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Materials and Methods

Ethics statement
Ethical aspects of this study were approved by the Ethics Committee of Research involving
Human subjects of Centro de Pesquisas René Rachou/Fiocruz (Protocol 377.205). All partici-
pants signed a written informed consent, including the next of kin, caretakers, or guardians on
behalf of the minors/children enrolled in the study.

Study area and subjects
A total of 46 patients who had relapsed P. vivax infections were selected (7–64 years old,
median 33). Following treatment, the reappearance of parasitemia occurred once in 28 (60.9%)
patients (defined as the single-relapse group) and two or three times in 18 (39.1%) (defined as
the multiple-relapse group). The eligibility criteria included the following: (i) a relapsed non-
complicated P. vivaxmalaria infection that had intervals between the initial episode and the
relapse ranging from 29 days to 6 months; (ii) patients who were not re-exposed to malaria
transmission during the interval between clinical malaria episodes; (iii) absence of other Plas-
modium infections; and (iv) if female, the absence of pregnancy. The malaria diagnosis was
conducted at the Hospital Universitário Júlio Muller (UFMT), Cuiabá, MT, from 2004 to 2013.
This hospital is located in a region that is currently in the pre-elimination phase of malaria,
and local P. vivax infection is considered highly improbable. All P. vivax-patients had traveled
to an endemic area of malaria, where they were infected. After returning home, the P. vivax-
patients were not re-exposed to Plasmodium infection, which was confirmed in the anamnesis
by the clinician who treated the patients at the malaria reference center in Cuiabá. Those indi-
viduals were treated with CQ (25 mg/kg for 3 days) and PQ (0.5 mg/kg for 7 days) according to
the guidelines of the Brazilian Ministry of Health.

Blood collection and DNA extraction
P. vivax infection was confirmed by microscopic examination of Giemsa-stained thick blood
smears that were evaluated by well-trained microscopists, according to the malaria diagnosis
guidelines of the Brazilian Ministry of Health. Venous blood samples (5 mL, EDTA tubes)
were collected at the time of each P. vivax episode. DNA was purified from the blood samples
using the genomic DNA purification kit (Gentra Puregene, Minneapolis, MN, USA) according
to the manufacturer’s protocols.

Genotyping of CYP2D6 and CYP2C8 polymorphisms using Real-Time
PCR
We genotyped five single-nucleotide polymorphisms (SNPs) in the CYP2D6 gene (G1846A
[rs3892097], G2988A [rs28371725], G3183A [rs59421388], C100T [rs1065852] and C10
23T [rs28371706]) and two SNPs in the CYP2C8 gene (G416A [rs11572080] and A805T
[rs11572103]). To genotype the CYP2D6/CYP2C8 genes by Real-Time PCR, we used spe-
cific hydrolysis probes for each SNP assay (Applied Biosystems, Foster City, CA, USA). All
amplification reactions were performed in a total volume of 5 μL and in the presence of
2.5 μL Taqman1 Universal PCR Master Mix 2x (Applied Biosystems, AB), 0.25 μL Geno-
typing Assay (AB), 1.25 μL water and 1 μL DNA (�10 ng/μL). The cycling parameters for
the PCR were as follows: initial denaturation at 95°C for 10 min, 50 cycles of 15 seconds at
92°C and 90 seconds at 60°C. Amplification and fluorescence detection were carried out
using the ViiA 7 Real-Time PCR System (AB).
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CYP2D6 copy number assay
We determined the copy number of the CYP2D6 gene by Real-Time PCR to evaluate the
CYP2D6 gene deletion and/or duplication using the Hs00010001_cn assay (AB). All amplifica-
tion reactions were performed in the presence of 5.0 μL Taqman1 Universal PCR Master Mix
2x (AB), 0.5 μL Copy Number Assay (AB), 0.5 μL Copy Number Reference Assay Human
RNase P (AB), 3 μL water and 1 μL DNA (�10 ng/μL). The cycling parameters used were as
follows: 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60 sec-
onds. Amplification was determined using the ViiA 7 Real-Time PCR System (AB).

Microsatellites and MSP-1 genotyping
Eight loci of microsatellites (MS01, MS02, MS04, MS05, MS06, MS07, MS08, and MS11) and
two loci of MSP1 (blocks 2 and 10) were amplified using specific primers and conditions as
previously described [12]. For electropherogram analysis, the minimum peak height was set
to 150 arbitrary fluorescence units (rFU). Additionally, we used the cut-off values for the
minor peak detection of one-third the height of the predominant peak to exclude artifact
peaks.

Computational analysis of the effect of CYP2D6 polymorphisms on PQ
metabolism
The structural effects of the CYP2D6 polymorphisms were assessed using mCSM-Stability [30]
and DUET [31] as a way to shed light into the molecular mechanism of the mutation’s impact
giving rise to a phenotype, as previously described [32–35]. These approaches are novel
machine-learning algorithms that use the 3D structure to predict quantitatively the effects of
point mutations [36]. The available crystal structure of human CYP2D6 was used in this analy-
sis (PDB code 3TBG [37]). PQ was docked into the active site of the structure using AutoDock.
The effect of the mutations was assessed in the context of the molecular interactions of the
wild-type residue [38, 39], and mCSM and DUET were used to predict the effects of the muta-
tions on protein stability. The potential effects of the mutations on flexibility were also assessed
using the coarse-grained normal mode analysis server ENCoM [40].

Statistical analysis
Fisher’s exact test or χ2 test was performed to compare the CYP2D6/CYP2C8 allele and the
genotype frequencies or parasite genotype among groups of individuals differing in the number
of relapses. Unadjusted odds ratios (ORs) were calculated with 95% confidence intervals (CIs)
to determine the association between the genotypes and the risk of relapse. The statistical asso-
ciations between the two groups defined according to the number of relapses and CYP2D6
mutant status were inferred using fitting logistic regression models. We also used logistic
regression analysis to test the association between time to the first episode of recurrence of
vivax malaria and CYP2C8 mutant status. Welch´s t-test and the Mann-Whitney U test were
performed to compare the differences in average age, number of previous malaria episodes,
parasitemia and time to relapse between single- and multiple-relapse groups. Statistical analysis
was performed using R software (version 3.1.1). The Hardy-Weinberg equilibrium was calcu-
lated using the SNPassoc package from R software. P-value<0.05 was considered significant in
all analyses. A correction for multiple testing was performed by multiplying the P-values by the
number of the tests (Bonferroni correction).

Pharmacogenetic and P. vivax Relapses
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Results

CYP2D6 Genotypes and Relapse in vivax malaria
To investigate whether variants of the cytochrome P-450 2D6 enzyme are associated with an
increased risk of P. vivax relapse, five polymorphisms known to be responsible for low or null
metabolic activity of CYP2D6 were analyzed in 46 patients who had relapsed P. vivax infec-
tions. According to the number of relapses observed during a follow-up period of 6 months,
two groups were defined: the single-relapse group (characterized by a single episode of P. vivax
relapse) and the multiple-relapse group (characterized by two to three episodes of relapses);
both groups did not differ significantly in age, number of previous malaria episodes, parasite-
mia levels or time to the first episode of relapse (Table 1).

Of the five SNPs genotyped in the CYP2D6 gene, the most prevalent polymorphisms were
C100T and G1846A, which are known to code for a significantly impaired enzyme (Table 2).
Of note, for the C100T polymorphism, a significantly higher frequency of heterozygous and
homozygous mutant genotypes was observed in individuals who experienced multiple-relapse
infections (12/18 [66.7%] vs 7/28 [25.0%]; P = .007; Bonferroni-adjusted Pc = .049). Consider-
ing the presence of the mutated allele in any of the five nucleotide positions, a higher frequency
of individuals with one or more polymorphic sites was observed in the multiple-relapse group
compared with the single-relapse group (16/17 [94.1%] vs 11/28 [39.3%]; P = .0003; Bonfer-
roni-adjusted Pc = .0021) (Fig 1A).

Because the number of CYP2D6 gene copies may vary and alter the physiological levels of
activity, we estimated the copy number of this gene in the study patients. All individuals had a
single copy of CYP2D6 (data not shown).

CYP2D6 Variability and Parasite Genotype
Next, parasites from 24 patients (with samples available from their initial episode and relapses)
were genotyped for the 10 molecular markers, and their haplotypes were correlated with the
enzyme variants. We classified the parasites present in the different infections of the same
patient as identical (when all of the markers have the same allele), related (8 to 9 markers with
identical alleles), and heterologous (less than 8 markers with the same allele) [12]. As shown in
Fig 1B, a high number of identical or related parasites was observed in individuals carrying the
CYP2D6 mutated alleles (12/18 [67%] vs 5/10 [50%]). This difference was not statistically sig-
nificant (P = .444).

Effect of CYP2D6 Polymorphisms on the Metabolism of Primaquine
We carried out an in silico structural analysis of the two CYP2D6 polymorphisms (C100T and
C1023T) that had a high prevalence among our samples to determine their effects specifically

Table 1. Demographic and epidemiological data of individuals who were enrolled in this study.

Characteristics Single-relapse(n = 28) Multiple-relapse (n = 18) P-value

Age, years (mean ± s.d.) 33.7 ± 14.7 35.4 ± 14.6 0.713a

Previous malaria episode, n (median ± s.d.) 2.0 ± 6.9 3.0 ± 3.7 0.445b

Parasitemia, parasites/μL (median ± s.d.) 1908.0 ± 4797.0 4085.0 ± 4834.0 0.377 b

Time to the first relapse,months (median ± s.d.) 1.88 ± 1.13 1.71 ± 1.04 0.295 b

Abbreviations: s.d., standard deviation; n, absolute number.
aWelch´s t-test.
bMann-Whitney test.

doi:10.1371/journal.pone.0160172.t001
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on PQ metabolism. The substitutions G1846A and G2988A occur in an intronic region and are
associated with a splicing defect. Whereas G1846A occurs at the consensus sequence of the
splice site of the 3rd intron of the CYP2D6 gene, leading to a defective enzyme [41], the
G2988A substitution is responsible for lower expression of the enzyme by quantitatively modu-
lating the splicing events around exon/intron 6 [42].

The mutation P34S (nucleotide substitution C100T) was predicted to be highly destabilizing
by three different methods (ΔΔGmCSM-Stability: -1.984 Kcal/mol; SDM: -1.920 Kcal/mol;
and DUET: -2.084 Kcal/mol). The residue P34 imparts rigidity to the backbone and is part of a
hydrophobic interaction network, which is lost in the P34S mutation, leading to a greater
degree of backbone freedom and destabilization of the enzyme (Fig 2A).

The mutation T107I (nucleotide substitution C1023T) was predicted to lead to an increase
in protein stability (ΔΔGmCSM-stability: 0.258 Kcal/mol; SDM: 2.190 Kcal/mol; and DUET:

Table 2. Genotypes and allele frequencies of theCYP2D6 gene in P. vivax-infected patients who had single or multiple episodes of relapse.

Genotypes and Allele Frequencies n (%)

C100T (IM/PM)a CC CT TT CT+TT c T e

Single-relapse (n = 28) 21 (0.750) 2 (0.071) 5 (0.179) 7 (0.250) 0.214

Multiple-relapse (n = 18) 6 (0.333) 7 (0.389) 5 (0.278) 12 (0.667) 0.472

P 0.010b 0.007d 0.012f

OR (95% CI) 5.74 (1.39–27.06) 3.28 (1.31–8.18)

C1023T (IM) CC CT TT CT+TT T

Single-relapse (n = 28) 25 (0.893) 2 (0.071) 1 (0.036) 3 (0.107) 0.071

Multiple-relapse (n = 18) 16 (0.889) 2 (0.111) 0 (0.000) 2 (0.111) 0.056

P 1.000 1.000 1.000

OR (95% CI) 1.04 (0.08–10.17) 0.77 (0.13–4.41)

G1846A (PM) GG GA AA GA+AA A
Single-relapse (n = 28) 21 (0.750) 4 (0.143) 3 (0.107) 7 (0.250) 0.179

Multiple-relapse (n = 17) 8 (0.471) 7 (0.412) 2 (0.118) 9 (0.529) 0.324

P 0.098 0.107 0.187

OR (95% CI) 3.28 (0.79–14.68) 2.20 (0.81–5.93)

G2988A (IM) GG GA AA GA+AA A

Single-relapse (n = 28) 28 (1.000) 0 (0.000) 0 (0.000) 0 (0.000) 0.000

Multiple-relapse (n = 18) 17 (0.944) 1 (0.056) 0 (0.000) 1 (0.056) 0.028

P 0.391 0.391 0.391

OR (95% CI) NT NT

G3183A (IM) GG GA AA GA+AA A
Single-relapse (n = 28) 27 (0.964) 0 (0.000) 1 (0.036) 1 (0.036) 0.036

Multiple-relapse (n = 17) 17 (1.000) 0 (0.000) 0 (0.000) 0 (0.000) 0.000

P 1.000 1.000 0.525

OR (95% CI) NT NT

Abbreviations: CI, confidence interval; OR, odds ratio; NT, not testable.
aPredicted phenotype based on The Human Cytochrome P-450 (CYP) Allele Nomenclature Database (http://www.cypalleles.ki.se/): IM–intermediate

metabolizer; PM–poor metabolizer.
bComparison of the genotype frequencies between single-relapse and multiple-relapse groups; 2-tailed Fisher’s exact test.
cFrequency of the heterozygous and homozygous mutant genotypes.
dComparison of carrier frequencies of the mutant allele; 2-tailed Fisher’s exact test.
eFrequency of the mutant allele.
fComparison of the allele frequencies between single-relapse and multiple-relapse groups; 2-tailed Fisher’s exact test.

doi:10.1371/journal.pone.0160172.t002
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0.495 Kcal/mol). The residue T107 is localized in the vicinity of the PQ binding pocket, and the
mutation T107I results in the formation of increased local hydrophobic interactions (Fig 2B).
As a consequence, there is an increase in the protein stability that significantly reduces
CYP2D6 flexibility, leading to reduced PQ metabolism (Fig 2C). This was supported by analy-
sis using the ENCoM server, which predicted that the T107I mutation would reduce flexibility
in this region.

CYP2C8 Variability and Relapses by Plasmodium vivax
To verify if polymorphisms that affect CYP2C8 functionality could also contribute to the
observed P. vivax relapses, the individuals were genotyped for two polymorphisms that are
associated with lower CQ metabolism. The CYP2C8�3 (G416A) allele was more frequent
among the studied individuals, and there was no difference between the single- or multiple-
relapse groups (6/27 [22.2%] and 6/18 [33.3%], respectively) of individuals carrying the
mutated allele (P = 0.499) (Table 3). Next, we sought to investigate the relationship between
the parasite genotype and CYP2C8 variability. A high proportion of identical parasites was
found among mutated-enzyme carriers (3/6 [50%]). However, compared with the wild-type
CYP2C8 carriers, the difference was not statistically significant (4/21 [19%]; P = .369) (Fig 3).
Due to a limited sample size, this analysis could not be performed separately for single- and
multiple-relapse groups. Additionally, the first episode of relapse was shorter in the group of
patients who had a mutation in CYP2C8 (41.00 ± 30.80 days in the CYP2C8-mutated group vs
58.50 ± 37.37 days in the non-mutated group; P = .025). A higher proportion of mutated
CYP2C8 subjects had P. vivax relapse, on average, within 42 days after the initial episode (8/15
[53.3%] under 42 days vs 6/31 [19.3%] above 42 days, P = .038) (S1 Fig). Hence, the odds of an

Fig 1. Frequency of CYP2D6 polymorphisms and parasite haplotype among P. vivax-infected patients who had
single (n = 28) or multiple (n = 18) episodes of relapse. (A) The number of CYP2D6 polymorphisms is represented by
the different intensity of color as specified in the legend. A simple logistic regression model shows a significant relationship
between the mutant status for CYP2D6 and the increased number of relapses (OR, 12.4; 95% CI, 2.80–88.57; P = .003).
(B) Frequency of parasite haplotype in patients without or with CYP2D6mutation. Parasites were classified according to
the number of markers containing identical alleles: identical in black (parasites showing all 10 identical markers); related in
gray (8 to 9 identical markers); and heterologous in light gray (less than 8 identical markers).

doi:10.1371/journal.pone.0160172.g001
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Fig 2. Analysis of the molecular interactions of polymorphic residues of CYP2D6 and their effects on
the metabolism of primaquine. (A) The residue P34 has a buried side chain that is inserted into a
predominantly hydrophobic environment (the hydrophobic interactions are depicted as gray dots) and is
performing a main-chain to side-chain polar interaction with a neighboring beta strand (red dashes). The
mutation P34S is predicted to destabilize the protein because it disrupts the local hydrophobic interaction
network and affects the backbone rigidity. (B) The interactions for docked PQ (dark gray) and residue T107
(green). Threonine 107 is located in the vicinity of the PQ binding pocket (6.1 Å from PQ) and also nearby
important catalytic residues (depicted in blue). (C) The mutation T107I results in the formation of increased
local interactions, reducing CYP2D6 flexibility. Residues are colored based on their predicted effect on
flexibility, ranging frommore flexible (red) to less flexible (blue).

doi:10.1371/journal.pone.0160172.g002
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early relapse were increased 4.8 times in patients whose mutation resulted in defective CYP2C8
metabolism (OR, 4.76; P = .023).

Discussion
Many factors may contribute to the success of drug therapies, including adherence to the pre-
scribed therapy, correct or optimal dosing, general health status of the patient, interactions

Table 3. CYP2C8 genotypes and allele frequencies in P. vivax-infected patients with different numbers of relapse.

Genotype and Allele Frequencies n (%)b

CYP2C8*2 (A805T)a AA AT TT AT+TTd Tf

Single-relapse (n = 28) 27 (0.964) 1 (0.036) 0 (0.000) 1 (0.036) 0.018

Multiple-relapse (n = 18) 16 (0.889) 2 (0.111) 0 (0.000) 2 (0.111) 0.056

P 0.552c 0.552e 0.559g

OR (95% CI) 3.37 (0.28–40.26) 3.23 (0.28–37.06)

CYP2C8*3 (G416A) GG GA AA GA+AA A

Single-relapse (n = 27) 21 (0.778) 5 (0.185) 1 (0.037) 6 (0.222) 0.130

Multiple-relapse (n = 18) 12 (0.667) 5 (0.278) 1 (0.056) 6 (0.333) 0.194

P 0.745 0.499 0.554

OR (95% CI) 1.73 (0.37–8.17) 1.62 (0.52–5.09)

Abbreviations: CI, confidence interval; OR, odds ratio; NT, not testable.
aCYP2C8 allele nomenclature and the nucleotide change.
bThe loci are in Hardy-Weinberg equilibrium in both groups (P > 0.05).
cComparison of the genotype frequencies between single-relapse and multiple-relapse groups; 2-tailed Fisher’s exact test.
dFrequency of the heterozygous and homozygous mutant genotypes.
eComparison of the allele frequencies between single-relapse and multiple-relapse groups; 2-tailed Fisher’s exact test.
fFrequency of the mutant allele.
gComparison of carriers’ frequencies of the mutant allele; 2-tailed Fisher’s exact test.

doi:10.1371/journal.pone.0160172.t003

Fig 3. Analysis of the parasite haplotype and time to relapse in days for carriers of CYP2C8
polymorphisms. Frequency of parasite haplotype between patients without or with CYP2C8 mutation.
Parasites were classified according to the number of identical markers: identical in black (10 identical
markers); related in gray (8 to 9 identical markers); and heterologous in light gray (less than 8 identical
markers).

doi:10.1371/journal.pone.0160172.g003
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with other drugs, and the contribution of the parasite genetics particularly related to drug resis-
tance. Another fundamental aspect that influences the treatment response is the way an indi-
vidual metabolizes the drug. Previous studies, which had very few patients, suggested that
polymorphisms in CYP2D6 might hinder malaria treatment and contribute to the relapse of P.
vivax infections [16, 17, 43]. Aiming to confirm this hypothesis, we retrospectively analyzed
the CYP2D6 genotype of patients who were not re-infected but experienced recurrent parasite-
mia. The strong evidence in favor of CYP2D6 enzyme variations on the outcome of malaria
treatment comes from the association between the repeated relapses and the frequency of
alleles associated with low PQmetabolism. Hence, the prevalence of CYP2D6 polymorphisms
analyzed was approximately two times higher among subjects who had multiple episodes of
relapse when compared with the single-relapse group. The current findings were corroborated
by in silico analysis that showed that the structure of CYP2D6 could be disrupted by the poly-
morphisms studied in two different ways: destabilizing the enzyme structure and reducing the
protein flexibility, especially around the PQ recognition site and catalytic residues.

Reinforcing the association between the PQ failure and the status of CYP2D6 activity, we
found that a high amount of relapses in the CYP2D6 mutated-allele carriers was caused by par-
asites identical or related (defined here as homologous). These results seem to be consistent
with the reactivation of homologous hypnozoites due to inefficacy of the PQ treatment.
Accordingly, in a clinical trial of anti-relapse drugs, it was proposed that the homologous
recurrence rate was the best predictor for comparing the efficacy of anti-hypnozoite drugs [44].
In fact, we and others have demonstrated that the majority of relapse episodes are caused by a
parasite population distinct from the initial infection [12, 13, 45]. Nevertheless, the concept of
the genetic profile of relapsing parasites is very complex and involves the following: (1) the
occurrence of multiplicity of the infection, enabling the presence of rare alleles not detected
either in the initial infection or in the relapses [12]; (2) the fluctuation of the frequency of circu-
lating parasite clones at the initial infection and relapses [12, 46, 47]; and (3) previous infec-
tions as a source of heterologous hypnozoites [15]. While we cannot rule-out all of these
possibilities in the present study, the last issue is unlikely because both groups (single- vs multi-
ple-relapse groups) did not differ in the number of previous malaria episodes, reducing the
possibility of bias in genetic characterization of the parasites.

Although the present study supports the role of the host CYP2D6 metabolizer status on
vivax malaria treatment’s outcome, this study has some limitations. Firstly, the concentration
of the parent drug and its main metabolite carboxyprimaquine (CPQ) in the plasma was not
determined. Despite that, it is well established that the PQ therapeutic effects depend on the
CYP2D6-generated metabolites [20, 23]. Secondly, because the treatment was not closely
supervised, PQ treatment failure could be due to suboptimal dosing of the drug. Although the
PQ dose was weight-based adjusted in a seven-day regimen, we cannot disregard the possibility
of some patients' non-compliance to the treatment. While this could be responsible for a few
cases of PQ treatment failure, the non-compliance could not explain the difference observed
here between individuals who had a single or repeated episode of relapse. Additionally, adher-
ence to the malaria treatment is usually high in different Brazilian localities (ranging from 67%
to 86%) [48, 49]. Thirdly, CYP2D6 variations were not exhaustively explored in this study
because the CYP2D6 gene is highly polymorphic and is represented by more than 100 different
alleles [50]. Owing to this complexity, the inference of a patient's CYP2D6 metabolic capacity
or phenotype is a challenging task. Herein, we focused on five SNPs in the CYP2D6 gene that
frequently occur in the Brazilian population and are associated with a decreased drug metabo-
lism phenotype [24]. Therefore, a more comprehensive analysis of the CYP2D6 genetic varia-
tion may add valuable information regarding the malaria treatment outcome.
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For over half a century, PQ combined with CQ has been the standard radical curative regi-
men for vivax malaria. In contrast to PQ, CQ acts mainly on the blood stages of P. vivax, and
CYP2C8 is the major enzyme involved in its metabolism. We evaluated the polymorphisms in
CYP2C8 to consider the possibility that some recurrences may be due to CQ therapy failure
associated with variation in CYP2C8. The results showed that 30% of patients have mutations
in the CYP2C8 enzyme. As expected, the occurrence of polymorphisms in CYP2C8 conferred
a lower CQ metabolism and did not differ between the single- and multiple-relapse groups
because CQ does not eliminate the hypnozoite in the liver. Interestingly, patients who carried
the CYP2C8 mutated alleles frequently had their first episode of recurrence within 42 days
after the initiation of therapy. These early recurrences were associated with a high proportion
of homologous parasites in the mutated-CYP2C8 carriers. Altogether, these findings support
that the early recurrences in mutated-CYP2C8 patients could be due to blood-stage drug treat-
ment failure associated with the impaired metabolism of CQ. Unfortunately, the plasma of
individuals was not available, and thus, the plasma concentrations of CQ and its main metabo-
lite (N-desethylchloroquine) could not be determined, which could give additional insights
about CYP2C8 functionality. Beyond drug failure in mutated-carriers, another possibility is
that the early recurrence could be the result of P. vivax resistance to CQ [1, 51]. However, CQ-
resistance might not explain the proportion of identical parasites in the mutated-CYP2C8 car-
riers. Futures studies to elucidate the molecular background of parasites that are sensitive or
resistant to CQ will help to clarify whether the early recurrence is due to CQ resistance or ther-
apeutic failure.

In general, the main finding of this study indicates that polymorphisms in CYP2D6 are
implicated in PQ treatment failure and may explain part of the P. vivax relapses. Additionally,
the functional impairment of CYP2C8 may also contribute to therapeutic failure causing the
recurrence of vivax infections. These results highlight the importance of pharmacogenetics to
monitor the efficacy of antimalarial therapy and to design strategies for malaria elimination/
eradication. In this context, the knowledge of individual genetic variation in enzymes involved
in the metabolism of the antimalarial drugs might shed light on the type of P. vivax recurrence,
i.e., recrudescence, relapse or new infection.

Supporting Information
S1 Fig. Description of the CYP genotypes, number of relapses and time to episode of
relapse for 46 P. vivax-infected patients included in the present study. The individuals who
were mutated in CYP2D6/CYP2C8 are indicated in black. For two individuals, some genotypes
could not be determined (in gray). The number of relapses is indicated by the following colors:
one (light green), two (green) and three (dark green). Patients who relapsed early (< 42 days
after the initiation of therapy) are highlighted in light blue, and those who relapsed later (> 42
days) are indicated in dark blue. A simple logistic regression model shows a significant rela-
tionship between the mutant status for CYP2C8 and the time to the first episode of recurrence
(OR, 4.76; 95% CI, 1.27–19.46; P = .023).
(TIF)
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